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IGNITION, COMBI'STION, DETONATION, AND QUENCHING
OF REACTIVE GAS MIXTURES

(Five Different Topics of this Research Program Have Been Investi-
gated During this Report Period -- 1 April 1975 to 31 March 1976)

I. EFFECT OF INITIAL TEMPERATURE ON THE DETONATION INDUCTION
DISTANCES OF HYDROGEN-AIR MIXTURES

Although many papers have been published on the structure of one-
dimensional detonation waves propagating into combustible gas mixtures
at room temperature, hardly any studies have been made on the effect of
initial temperature on the initiation process. Several years ago Edse
and Lawrence Jr.l! measured the detonation induction distances in low=-
temperature hydrogen-oxygen mixtures. The present study was undertaken
to determine whether fuel-air mixtures behave like fuel-oxygen mixtures.

A. APPARATUS AND MEASUREMENTS

. A 6.4 m long stainless steel tube with an inner diameter of 5 cm
and a wall thickness of 0.635 cm was used for these experiments, Fig-
ure 1 is a photograph of the tube, and the locations of the probes are
given in Fig. 2. The detonation tube was encased in a 0.635 cm steel
Jacket which was welded to the tube and insulated to the surroundings by
two layers of Armstrong-Armaflex rubber, each having a thickness of 1.9 cm.
A Minnesota Valley Engineering (MVE) Model VGL-160L liquid nitrogen con-
tainer was used to pass liquid nitrogen through the jacket at a speed
which established the desired low temperature of the combustible gas mix-

ture in the detonation tube. This mixture contained 30% hydrogen and 70%

dry air by volume. Complete mixing was established in a specially de-
signed mixing chamber from which the mixture was transferred directly as
a continuous flow to the detonation tube. Prior to this transfer the
detonation tube was evacuated to remove all moisture.

The initial temperature of the combustibe gas mixture was measured
by two copper-constanten thermocouples. A 0.13 mm pyrofuse wire, ex-
ploded by a 4O V ac power supply, was used io ignite the hydrogen-air
mixture. Two Kistler pressure transducers were employed, together with
a Tektronix Type 555 dual beam oscilloscope, to determine the detonation
wave speed and to measure the pressure at two locations in each experi-
ment. The transducers were placed at various distances from the ignitor.
At least three measurements were made for each location. Three typical
oscilloscope traces are shown in Figs. 3a-c. All experimental data are
tabulated in Tables I, II, and III and depicted graphically in Figs. 4
and 5. The detonation induction distances as obtained from Fig. 5 are
compiled in Table IV.




i

o 186 I N WO

Fig. 1 - Detonation tube and other equipment used for low-temperature
detonation studies of 30% hydrogen and T70% air gas mixture

— s

abiaca R ole el L adiasiie s L p S st L i L S

S et AR i e



R 7

) el o Gl YD - o dii iy e i et o Ll L A e i i B Sl

saqoxd 3O suofqeo0] - 2 *BTd

dWNd WNNOVA  —dA

1SNvHX3 -3
SNOILVOO1 3804d NOILO313a ¢l

A18IN3SSY 43LINOI ANV 137Nl -1

w49

NI N390MLIN
ainonn
3ENL R

1N0 N390YLIN _
ainoin

F———

" —— e T—
" i L eidds VG DT T PP S SR i
%

A Rt |

¢l

13Movre

fees emm N S N D R R R

P DA




3(a) 1Initial Tempera-
ture = 123 K

Upper Trace: 15 cm

from ignitor sweep
rate = 5 ms/div ver-
tical sensitivity =
L.y atm/div

Lower Trace: U45 cm
from ignitor sweep
rate = 5 ms/div ver-
tical sensitivity =
L.2 atm/div

i 3(b) Initial Tempera-
ture = 173 K

Upper Trace: 15 cm
from ignitor sweep
| rate = 5 ms/div ver-
5 tical sensitivity =
% L.6 atm/div

Lower Trace: 45 cm
from ignitor sweep
rate = 5 ms/div ver-
tical sensitivity =
6.3 atm/div

3(c) Initial Tempera-
ture = 223 K

Upper Trace: 15 cm
from ignitor sweep

rate = 5 ms/div ver-
tical sensitivity =
4.6 atm/div

Lower Trace: 45 cm
from ignitor sweep
rate = 5 ms/div ver-
tical sensitivity =
5.0 atm/div

Fig. 3 - Typical pressure traces in the detonation induction region at
various initial temperatures
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Table 1. Wave speeds and wave pressures in the detonation induction
region for a 30% hydrogen in air mixture at an initial tem-
perature of 123 K and an initial pressure of 1 atm

Distance from Wave Speed Wave Pressure
Igz;;fr (m/s) (atm) Remark
+2.3 The detonation

15 o 7'3-2.7 wave observed at

242 cm from the

45 8 O+0.8 ignitor decayed

gl *7-0.9 further down the

tube

90 272416 104 0
+75 +2.2
149 500" /2 S e
180 66837 B
242 1922415 18.210.5
+437 +3.3
o 563 221 13.T4.2
+282 +2.7
332 8’ e 13075 2
+222 +1.8
394 M7 178 o

— Not measured.
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- P Table 2. Wave speeds and wave pressures in the detona-
! tion induction region for a 30% hydrogen in
air mixture at an initial temperature of 173 K
and an initial pressure of 1 atm

; L Disg;ngzofmm Wave Speed Wave Pressure
i i i (m/s) (atm)
i L 15 - 4,610.2
" s . 6.219:3
1 90 200+22 6.5+0.4
; 149 561{;3 8.040.2
180 w2 B!
22 9337108 Ba5lys -
302 8770 2.5 |
332 1902*0 1745078
394 20000 18.0*_’8:3 1
L5k 198310 18.0’:8:; [ ‘
577 197220 18.0%0:3 ‘
630 : 19810 18.ofg:!3‘

= Not measured.




it b o N e g

ST
gy

R F 1

 § e Table 3. Wave speeds and wave pressures in the detona-
? tion induction region for a 30% hydrogen in

i | air mixture at an initial temperature of 223 K
f i and an initial pressure of 1 atm

f
I
§
g
%
|
*
E

{
4
; i
i Distance from Wave Speed Wave Pressure
N | L Ig(ncf)"r (m/s) (atm)
1 0.4 F
3 L3 +0.
| e e :
| s +0.2
45 4.1tee
0 254 h 3.610.0
| 149 g 3.740.0
3 : 180 350‘:223 9.90.6
; : 242 1064727 9.8 3
+64 +2.0
302 269716 143753
*353 +2.6
R 1 332 980753 15.1%0 ¢
J 394 469200 22.210.7
‘ t 13 0.5
b | | i 19873 s
630 201210 17.80.0

- Not measured. ,
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Table L.

temperatures (T;):

Average induction distances (djng) in a 30% hydrogen in air
mixture in a 6.4 m long, 5 cm I.D. tube at various initial
Initial Pressure, Py = 1 atm

g(*) 123 173 223 295

dind No Detona-

(cg) 230 332 450 tion was
observed

Note: Induction distance (dind) has been defined as the distance be-
tween the source of ignition and that point in the tube where

the wave first travels at the speed of the C.J. detonation wave.
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1. Determination of Normal Burning Speeds

In order to assess the influence of the normal flame propagation
rate on the transition from deflagration to detonation the flame propa-
gation rates of hydrogen-air mixtures were measured at various tempera-
tures. By cooling and heating the gas mixture it was possible to make
measurements over a temperature range from 123 to 784 K.

At temperatures above room temperature the straight burner tube as
well as the individual gas flows were heated. The hot gases were intro-
duced into a mixing chamber which was connected to the heated 70 em long
stainless steel burner tube having an internal diameter of 0.458 em. To
avoid flash-back a hydrogen-rich mixture (53.6% hydrogen and 46.4% air)
had to be used. Photographs of the flames were taken at original size
on Kodak Plus-X 35 mm film. The temperature of the unburned (heated)
hydrogen-air mixture was measured at the exit of the burner tube with a
chromel-alumel thermocouple just prior to ignition and subsequent expo-
sure of the film.

The flame speeds, uf, given in Table V and shown in Fig. 6, are
based on the average angle of the inner flame cone.

For the measurements at low temperatures the burner consisted of a
70 cm long copper tube with a 0.635 cm internal diameter. Mixing was
accomplished in a coiled copper tube with an outside diameter of 0.635 cm.
The diameter of the coils was 10 cm and the spacing was 1.3 cm. In order
to avoid flash-back a small nozzle with an inside diameter of 0.3175 cm
was silver-soldered to the tip of the burner tube. With this nozzle it
was possible to make flame speed measurements with 30% hydrogen and 70%
air mixtures. Both the burner tube and the mixing coil were immersed in
a large Dewar vessel partially filled with liquid nitrogen. The results
of the measurements are given in Table V and shown in Fig. 6.

B. DISCUSSION OF RESULTS

Figure 5 shows the wave pressure in the detonation induction region
as a function of distance from the ignitor. On the basis of previous
measurements! it has been assumed that the maximum pressure attained in
the induction region is practically the same for all initial temperatures.
These pressures were also observed in a 42 m long and 7.5 cm internal
diameter detonation tube at room temperature (Fig. 7). However, the tube
used for the measurements at low temperatures was not long enough to per-
mit the formation of a stable detonation wave when the mixture was ini-
tially at room temperature. By comparing the results of Fig. 7 with those
shown in Fig. 5, it can be concluded that the pressure-distance profile
within the induction region at room temperature is similar to those at
low temperatures. The pressure overshoot as indicated in Ref. 1, which
is attributed to either shock merging® or to the boundary layer type ini-
tiation,® is also observed, before the onset of detonation. The detona-
tion induction distances are significantly reduced as the temperature of

1
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x = Table 5. Normal flame speed of hydrogen-air mixtures at various
g : £ initial temperatures by the flame cone method: Initial
| Pressure = 1 atm
|
>_' * Mixture Composition Initial Temperature Normal Flame Speed
| (by volume) (x) (m/s)
123 1.40
290 2.64
Hydrogen = 53.6% 523 5.09
Air = L46.4% 620 6.24
{ 755 11.71
784 12.18
Hydrogen = 30% 123 1.27
Ar = 70% 290 2.h0
. !
1 f
2 |
| 4
5
1
1
Li
] 12
i
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o 200 400 600 800 1000

TEMPERATURE (K)

Fig. 6 - Graphic presentation of flame speed data from Table 5




sanjexadweq woox e aTTJoxd soueqsTp-aanssaxd - ) *JTd

- (W3) YILIN9I WOHS 3ONVLSId

009 00S . oot 00¢ 00¢ 00l .0

T TR T Y T

< .

(WD) 3YNSS3dd IAVM

00}

>

=

14




T S s

the initial gas mixture is reduced. At 123 K the detonation wave is
already formed 230 cm away from the ignitor whereas no detonation was
observed at room temperature in this tube (Table IV).

Although at 123 K the detonation wave was formed after 230 cm of
travel of the deflagration wave, it was not stable. Apparently heat los-
ses to the cold walls of the tube are responsible for this decay. At
173 and 223 K this decay of the wave was not observed.

The normal flame propagation rates of hydrogen-air mixtures at
various temperatures are compiled in Table V and depicted graphically in
Fig. 6. These data reveal very clearly that the initial temperature of
the gas has a substantial influence on the burning speed of this gas mix-
ture. This observation has also been reported by Duggar and Heimel? for
various hydrocarbon-air mixtures. The results, as shown in Fig. 6 and
given in Table V for hydrogen and air mixtures, follow an empirical re-
lationship which is quite similar to that developed by Heimel and Weast®;
i.e.,

B+ CT" ,

up
where

laminar flame speed (m/s) ,

n

ue
Ty = initial gas temperature (K) ,
B, C, and n are empirical constants, and
the value of n is between 2 and 3.

In the present case the values of B and C are 1.128 and 0.000018, re-
spectively, and the value of n is taken to be 2, so that the relationship
between flame propagation rate and temperature for a 30% hydrogen in air
mixture becomes

up = 1.128 + 0.000018°7% .

Thus the laminar flame speed of this mixture is approximately proportional
to the square of the absolute temperature of the initial gas.

The question that now arises is "How can the detonation induction
distances decrease significantly when the flame speeds are reduced so
much?" Edse and Lawrence Jr.! pointed out that: after a combustible
gas mixture has been ignited in the confines of a detonation tube, the
greater the resistance of the unburned gas to the motion of the expanding
burned gas, the higher will be the pressure of the burned gas. Thus mod-
erately strong compression waves are generated in the unburned gas which
merge rapidly and thus form a detonation wave at a very short distance
from the ignitor.

15




Since the resistance of the unburned gas is a function of its density
and friction at the tube wall, the greater the density of the unburned
gas the more it will keep the burning gas from expanding so that pressure
waves are formed more readily and thus lead to a rapid transition from
deflagration to detonation. Since the lowering of the initial gas tem-
perature at a constant pressure (1 atm) increases the density of the gas
and hence the resistance to the flow of the expanding burned gas, rather
strong compression waves are generated right at the onset of ignition.
This fact is evidenced by the pressure traces shown in Fig. 5. At 123 K
and at 15 cm from the ignitor the pressure rise is already of the order
gf 8 atm, at 173 K it amounts to 5 atmospheres, and at 223 K it is only

atm.

As shown in Fig. 7, at room temperature the pressure is essentially
constant even up to 150 cm from the ignitor. Thus, these strong compres-
sion waves generated at low temperature increase the pressure and temper-
ature of the unburned gas much more rapidly than at room temperature.

In addition, the reflection of the precompression shock from the tube
walls and the downstream end of the tube increase the temperature and
pressure of the unburned gas even further by increasing the strength of
the precompression shock. An increase in temperature and pressure of

the compressed but unburned gas increases the burning velocity of the
combustion wave very rapidly. Furthermore, when the reflection of rather
strong compression waves passes through the combustion wave a large in-
crease of the flame surface occurs,® so that rather turbulent flames are
produced which also lead to a significant increase of the burning rate.®
Also, as pointed out by Brinkley and Lewis,’ the effect of reflected waves
on the acceleration of the flame is much more effective than the incre- ?
mental acceleration.

According to Karlovitz,® a very strong turbulent wrinkling of the
combustion surface can be produced by a very strong shock wave so that -
a detonation wave is formed more quickly. Thus as long as the burning ﬂ
speed of the initial gas mixture is large enough to maintain a combustion i
wave, the much higher rise in pressure and temperature of the compressed
but unburned gas due to the lowering of its temperature along with the
generation of turbulence (as explained above), is always going to increase
the burning rates to a much greater extent than at room temperature.
Consequently a significant reduction of the induction distance is accom-
plished.

To explain why at 123 K a C.J. detonation wave once formed is unable
to propagate further down the tube with a constant speed and pressure,
the stability and structure of the so-called self-sustained detonation
wave will be examined. Many papers have been published after Zeldovitch,®
von Neuman,'© and Déring'! proposed their model regarding the stability
and structure of self-sustaining detonation waves. According to the ZND
model, a gaseous detonation wave consists of a shock wave which traverses
the unreacted gas mixture and is followed by a reaction zone. The chem-
ical changes are initiated in the high-temperature gas behind the shock
wave. It is assumed that at the tail of the reaction zone, the gas

16
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reaches thermodynamic and chemical equilibrium. The energy released by
the combustion of the fuel supports the propagation of the shock wave.
Thus, the detonation wave (that is, the combination of the shock and com-
bustion waves) possesses a self-sustaining or stable character and prop-
agates with a constant speed and pressure, commonly referred to as the
C.J. velocity and C.J. pressure. The detonation wave speed and pres-
sure are independent of the chemical kinetics of the combustion reaction
and they are governed only by the fluid mechanical and thermodynamical
laws. The ZND model is based on the one-dimensional structure of the
detonation wave.

However, as observed by Fay12 the structure of a self-sustained
detonation wave is strongly influenced by the chemical kinetics of the
combustion process. It is quite certain'® that. the wave front of all
self-sustaining detonation waves is three-dimensional. The one-dimen-
sional flow behind a plane detonation front is usually disturbed by the
occurrence of three-dimensional oscillations in the gas. Martin and
White,'* using interferometry to investigate near limit detonations,
found convolutions in the reacting gases which they attributed to spin.

Déring! has suggested that at the limit of detonability rarefaction
waves, generated by cooling at the wall of the tube, may penetrate far
enough into the reaction zone to quench the detonaticn wave. Sokolik!S
taking into consideration Doring's idea that a rarefaction wave is formed
at the tube wall during cooling of the hot gases in the reaction zone,
postulated the following criterion for the decay of the detonation wave:

a/2e < t, ,

where

=7
n

tube diameter,

speed of sound (i.e., the speed with which the
rarefaction wave will travel), and

(e}
n

tr = reaction time.

Zeldovitch® also considers the heat losses from the hot boundary
layer to the cold wall of the detonation tube. This heat loss lowers

the temperature in the reaction zone, which causes a decrease of the
chemical reaction rates and thus may lead to an incomplete liberation of
heat from the combustion process. Consequently the strength of the shock
wave will be reduced, which, in turn, will reduce the reaction rate still
mere., As the reaction rate is decreased the thickness of the reaction
zone is increased. The, effect of thermal losses as explained by D‘dring,n
Sokolik,'S and Zeldovitch® applies only to one-dimensional detonation
waves. The three-dimensional analysis of the wave includes heat losses
automatically.
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Then after the detonation wave has decayed to a deflagration wave,
suitable conditions of temperature and pressure farther down the tube
may cause the flame to accelerate again and form another shock wave which
results in the formation of a second stable detonation wave. The high
temperature and pressure may be caused by reflection of the initial shock
wave from the closed end of the tube. This explanation is in agreement
with the data given in Table I; in one experiment a C.J. detonation was
observed at 577 cm from the ignitor after the decay of the first wave
which was formed at 230 cm from the ignitor. It appears that this behavior
of the detonation wave occurs only at 123 K because of the higher thermal
losses at this low temperature.

II. CALCULATION OF THERMODYNAMIC AND GAS-DYNAMIC PROPERTIES
OF A ONE~-DIMENSIONAL GAS FLOW TO WHICH ONE OR MORE DIF~
FERENT GASES ARE ADDED

A. INTRODUCTION

The addition of gases to a primary flow through a duct may be ac-
complished either with an increase in duct area as shown in Fig. 8 or in
a constant area duct as depicted in Fig. 9.

In the following analysis it will be assumed that the flow is adia-
batic relative to the environment and that there are no viscous inter-
actions between the flow and the walls of the duct. The calculation of
the length of the channel required to produce a completely homogeneous
gas mixture will not be included in this analysis because this problem
involves the complex nonequilibrium and rate phenomena of diffusion, heat
transfer, momentum exchange, and chemical changes. The inclusion of
these relationships leads to very complex, and, in all but the simplest,
highly idealized cases only to approximate, equations which cannot be
solved rigorously at the present time.

B. DERIVATION OF EQUATIONS

For the derivation of the equations which must be used to calculate
the thermodynamic and gasdynamic properties of the uniform final flow
(subscript m when no chemical changes occur and subscript ¢ when chemical
changes have occurred and produced a mixture in chemical equilibrium)
from the initial conditions (subscript i) of the unmixed gases, the fol-
lowing notations and definitions will be used:

Ao = area of duct throuéh which the primary flow passes.
Subscript O (zero) is used to denote all properties of the primary
flow
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Ay = area of injector through which the species is (i = 1, or 2,
3y ¢eees...n) added to the primary flow (i - 0) at

Oy = angle between direction of primary flow and that of axis of
injector carrying species i

i = subscript to denote chemical species of gases, primary flow
(i = 0) and injected gases. i =1,2, 3 .....nori=1, 2,
3, .....2 when chemical changes are involved

n = number of injectors {
z = number of species in mixture in chemical equilibrium
m, = molecular mass (kg/kmol) of species i (i = 0, 1, 2, 3, .....n
or z)
mn = molecular mass of gas mixture when no chemical changes are
involved
me = molecular mass of gas mixture when chemical changes have occur-~

red and complete chemical equilibrium has been established

T = static temperature of species i (i = 0, 1, 2, .....n) just prior
to mixing (XK)

Ta = static temperature of uniform final flow when no chemical changes
have occurred

i R A e R R i e i B s i R

Tc = static temperature of uniform final flow when chemical changes

3 have occurred and chemical equilibrium has been established ;

3 -Similarly we have: ; ﬂ
P = static pressure with subscripts i, m, or ¢ (N/m?)

u

linear gas speed with subscripts i, m, or ¢ (m/s)

Ni,mn = mole fractions
of unreacted gas mixture
Xy,m = mass fractions

Ni,c = mole fractions of reacted gas mixture
vy = number of moles of species i

H = absolute molar enthalpy (J/mol)
h = absolute enthalpy of a unit mass [J/kg = (m/s)?]

Eo,1 = molar zero point energy of species i
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Aﬂg,{ = formation enthalpy of species i at temperature T (J/kmol) from
elements at T = O K.

R = 8314.33 (J/kmol+K) = universal gas constant (J/kg-K)

Ry = (®/my)

X = (*/m,) ¥ specific gas constants (J/kg-K)

R, = (®/m)

The three fundamental, unknown properties (namely, temperature,
speed, and pressure) of the flow of the mixture can be calculated from
equations derived from the conservation laws of mass, momentum, and
energy, and the equation of state in the forms in which they apply to
this kind of flow,

The first relationship between the known initial and the unknown
final conditions of a flow is obtained from the law of conservation of
mass (continuity equation).

For the mass flow rate through a channel we can write
m = puA (1)

When p and u represent average values of the density and speed over
the cross-sectional area A.

Upon elimination of the density by means of the equation of state

p = %Tm— ] (2)
we obtain
ﬁ o R.m.u.A (3)
R.T
According to the law of conservation of mass we have
n
i=0
which together with Eq. (3) leads to
i n
L Zim; n m
SR N is0 KT, _ 5 Z TULICTLY
if e Am mum-mm“m'. T: K Upn mAm i=0 Ty (5)
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where A, = Ao + 2. Ajcosay or A, = Ao for the case of normal in-
i=1

jection, or as shown in Fig. 9.

The second relationship between known and unknown variables is
based on the conservation of momentum. As long as all viscous interac-
tions between the fluid and the walls of the duct and injectors through
which they pass can be disregarded, the total momentum of the fluid, or
more precisely its momentum flux at any cross sectional area in the duct,
is made up of two contributions; i.e., (1) the momentum flux, mu, re-
sulting from the motion of the fluid as a whole, and (2) the momentum
flux caused by the random motion of the individual molecules of the gas
which is equal to the product of the static pressure and the channel
cross-sectional area. Thus, for such flows, conservation of momentum
leads to

n
gy + AP + 121 (mgug x + Ay «py) =

m, +A,p. = e + Aspe - (7

With A; , = Ajcosay, uy , = uscosayy and Eq. (3) the momentum equation
can be written in the following form:

m. 2 n m.u2
AoPo(—sE%‘? + 1) + 'E]_ A.Pi (—SR_'It‘%L + l) cosoy = (8)

m u2 ™m us
A..p_ + l) = A,.pc(—ﬁ&'zﬁ + 1) .

The areas Ag, Ay, and A, can be removed from this expression by using
the continuity equation in the form

o QR
AoPo = %),”—:I;'Qu; , etc.

Substitution leads to

£
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KTy (gug _RTy =
o 77 o ( R 1) + -“;1 my ( G, + 1) cosoy
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Upon division of the whole equation by m and by factoring out the second
term in each parenthesis we arrive at

n
RT KT
X5Ug [,ﬁ,'?gg * l] + ié:l X3iUy [77-1—1&{ + l] cosQy =

u, [77*%'35* 1] e [ﬁ%‘ig*l] : (10)

where xo = (mp/m) and the x; = (m;/m) are the so-called mass fractions
of the individual constituents of the initial flow. Equation (10),
which satisfies both the law of conservation of momentum and that of
mass, contains only two unknowns (namely, T, and u,) when no chemical
changes occur, since in this case.?”’, can be calculated readily; whereas
the final gas composition must be determined first to calculate

= Y ny,c i, where the ni o are the mole fractions of the individual
constituents of the final mixfure in chemical equilibrium. Because of
the greater complexity of these calculations this case will be treated
later.

1. Mixing Without Chemical Changes

Turning now t6 the case of chemically inert mixtures, we find that
the molecular mass of the mixture, 777, can be calculated readily by
means of the known mass fraction, x;, of the individual flows. Fre-

quently it is advantageous to use the male fractions, ny, for these cal-
culations.

By definition we have

._‘.’x_ (11)

n bl
2
ic0

it

U E!

where the v; represent the number of moles of species i passing through
channel A; (i = 0, 1, 2...n) per unit time. These mole numbers are
equal to the mass flow rate, ﬁu, divided by the corresponding molecular
mass, 7/, of the constituent according to the equation

b= (22)

24
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Substitution of Eq. (12) into Eq. (11) leads to

L

. - (13)
12—_:0 (;ﬁ}i_ )1

The molecular mass of a mixture, by definition, is

m, =B (14)
v
or
n
m, = 2. N . (15)
i=0

Substitution of Eq. (13) into Eq. (15) leads to

n

() X
m...=§° B ‘*’

L) L&) L)

——— -(16)
X
Z z (#)

For numerical calculations Eq. (10) is written as an equation giving th
temperature T, as a function of the gas speed u,; i.e.,

aic) _ua (ol - v,) (a7)

o

vhere
n
\‘Ig?!;lg.))(: Xolo (1“'R-°2°T ) + D, mowy (l"'R—‘z-’"T ) cosQly .
Yo i=1 et

Alternately, Eq. (10) can also be written as an equation giving the gas
speed as a function of the temperature; i.e.,

o= 30) + [TRERI T - o 0®)

The superscript M-C is used to indicate that numerical values of the
temperature calculated by means of Eq. (17) for certain speeds, u,, or
numerical values of the speed calculated by means of Eq. (18) for cer-
tain temperatures, T,, satisfy only the momentum and continuity equa-
tions. To calculate the temperature T, Tor the gas speed u,)

25
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which satisfies also the energy equation it is necessary to use the
energy equation to remove the gas speed, u,, from Eq. (17). In other
words we must obtain an equation which contains T, as the only unknown
or we must remove the temperature T, from Eq. (18) to obtain an equation
which contains u, as the only variatle.

Because of the complicated relationship between the thermodynamic
functions (such as enthalpies, internal energies, and specific heats)
and the temperature, a rigorous solution can be established only for
calorically perfect gases [temperature-independent specific heats, see
Eq. (37)]. For all other gases, even when no chemical changes occur,
the final conditions (u,, Tm, and p,) can be calculated only by an iter-
ation procedure. The accuracy of the results can be as good as desired.
Of course, it cannot exceed that of the thermodynamic functions used in
these calculations.

As long as the flow is adiabatic relative to its environment the
energy equation for the mixing process can be written in the following
simple form:

n

Eolh, (h,+‘12—-21-)=ﬁ1_(hm+22ﬁ) . (19)

The injection angles ; do not appear in the energy equation because

they do not have any influence on the scalar property of energy. The
terms representing the heat transfer between the various gas flows, which
is necessary to achieve a uniform temperature, do not have to be included
in the energy equation because only the final state of the gas is to be
calculated. This internal transfer of energy is included implicitly in
Eq. (19). It affects only the magnitudes of the two terms representing
the energy of the flow; i.d., h, the enthalpy which consists of the ran-
dom motion energies of the molecules plus the flow work term pv, and
(u®/2), the kinetic energy due to the motion of the gas as a whole. 1In
the same manner the viscous interactions between the various flows are
taken into consideration in the momentum equation in which viscous in-
teractions determine the relative magnitudes of the momenta due to the
random motion (p) and ordered motion (pu®) to the total momentum which
remains constant as long as wall friction is disregarded.

In Eq. (19) the absolute enthalpies, h;, of species i (usually a
single component gas; if not, such as air, it may be treated as if it

were a pure gas) are related to the absolute molar enthalpies of the
species by the following expression:

g (2]

where the superscript T; denotes the temperature at which the value of
the absolute enthalpy is to be taken.

26
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i B 5 On the other hand the absolute enthalpy, h$M, of a unit mass of a
1§ mixture is obtained by summing the properly weighted molar enthalpies, |
Bt 1 H?m, of the species; e.g.,
1R !
1 ! h}:m =Zni Hrfm s (21) ?
B § Z i sm §
E j, where T, is the temperature of the gas mixture, which means that all ?

constituents have this temperature. The weighting factors in Eq. (21),
it 11 the Ny o, are the so-called specific molalities of the constituents.
They are defined as follows:

ng,. = Vi moles of species i ] . (22)
m unit mass of mixture

8 Using Eq. (12) we can express the specific molalities in terms of the
1 | mass fractions;

(ke TR
ni,m";ﬁ’%—m‘;‘ (23)

As long as only steady flows are considered it is not necessary to
distinguish between mass (m; or m) and mass flow rate (m; or ) in many
of these relationships. Therefore, to simplify the notation, the dot
over the properties denoting flow rates will be omitted when permissible.

Sufficiently accurate numerical values for the absolute molar en-
thalpies of the species, Hj, are not available because they can be ob-
tained only from determinations of the molecular masses extending to at
least 16 significant digits, which is many orders of magnitude beyond
our present capabilities. The absclute enthalpies include the rest mass
of the species, expressed in units of energy, Eo,: = My 4-c® (c = speed

S of light) which make the numerical values so enormously iarge. Since we
! . are never interested in absolute enthalpies, because only differences
i appear in all equations involving enthalpy (or internal energy), the ab-
solute values can always be replaced by properly selected relative values
i of enthalpy (or internal energy). When no chemical changes (which means
no mass changes according to Einstein's mass-energy equivalence relation-
ship, Ae = -Am.c®) occur in the process under consideration, the absolute
molar enthalpies, H?, can be replaced by the sensible enthalpies, i 3
(H-Eo)T. Thus using the relationships Eqs. (20) and (21) and introducing ;
the sensible enthalpies, the energy equation [Eq. (19)] can be written 4
as follows:

n T ¢
2 i [('}%WE?)-‘£ ¥ %i] = i [Ent,m(H'Eo)'f" + 95] L)

For computational purposes it is advantageous to replace the sensi- :

T
E—EQ) , because
1

ble enthalpies by the reduced sensible enthalpies, ( RT
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they are more readily available in tables than the sensible enthalpies.
Therefore, Eq. (24) is modified by multiplying the first term in each
RT 4 RT\n

square bracket by the identities iT— or §T—’ respectively. Furthermore,

the whole equation is divided by the mass of the mixture, m, and the spe-
cific molalities are eliminated by means of Eq. (23) to express the com-
position in terms of the mass fractions. We arrive at

n T
H=-E ~ u% X H=E,\" ™ 2
X a1, (B=Eo Eéx e Y e, (P20 +%5.
i=o M, ( ) = 2 {=o M, ( KT )1 2

Solving for the gas speed we obtain

(E) _ (v H-EQ)T1 Xy (H-Ep\l»
Up ¢ = P2y x3 |uf + 2R(Ty ( aT )y |- T & 7ﬁ% ( AT )1 (25)

The superscript (E) is used to indicate that this gas speed, when calcu-
lated for an arbitrary value of the temperature T,, satisfies only the
energy equation, Usually its numerical value is obtained with an arbi-
trarily assumed temperature, T,. The last term under the square root
sign in Eq. (25) can be simplified slightly by replacing the mass frac-
tion, x;, by the mole fractions, n;. According to Eq. (13) we have

=
= Vi = :
Ll Wagos T (26)
Vi Z -—Lm
i=0 i=0 1

and according to Eq. (14) we have

My=—"—=—2—. (27)
R
vy
igo 1Z=:om*
R

Upon division of Eq. (26) by Eq. (27) we obtain

B
AT @

and thus Eq. (25) can be written in the following form:

T e
u,gE) E X3 [u, + 2R,T,(Hm,) ] RnT, Z 4 __'113.9)l « . A29)
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An approximate value of the gas speed, u,, can be ca%cul ted when the
expression for the temperature of the gas mixture, T,,,M"C , according to
Eq. (17), is substituted into Eq. (29). The resulting quadratic equation
in u, may be considered to contain u, as the only unknown because the

n s
term 2: ni (25%9)1 varies only very slightly with temperature. For
i=0

calorically perfect gases the reduced sensible enthalpies are constant
so that for such gases the speed of the gas mixtures can be calculated
directly from the given conditions. For gases with temperature-dependent
reduced sensible enthalpies the speed of the mixture can be calculated
by an iteration procedure starting with a reasonable estimate of T, so

n
that the sum ) qi mT ) can be determined. This procedure will be
i=0

developed after a general insight into the relationships between T, and
u, has been gained.

For an efficient application of the iteration procedure and for a
critical appraisal of the solution obtained by the method described above
it is helpful to examine the possible range of values of T, and u, as
given by the combined momentum and continuity equations alone [Egs. (17)
or (18)] and by the ene~gy equation alone [Eq. (29)].

According to the momentum equatlon [Eq. (17)] the range of possible
speeds of the gas mixture is given by the following condition:

M-C T S RyT
Os=su, = u,g,ma,)( = [XOU.Q (R_IQ;ZOQ * l) + El Xaug (—é%"" + l) COSai] . (30)

For gas speeds outside of this range the temperature of the gas mixture

would be negative, an obviously impossible result. Therefore, the term

in the square bracket of Eq. (30) represents the maximum possible speed
of the as mlxture according to the momentum equation. It is obvious
that T$ ecomes zero when u, = O and when u, = up,max. The maximum
speed, u& z and the specific gas constant, R,, are constants for a
given set of initial conditions (xg, ug, Ty, 7",, and ;). An inspection
of Eq. (17) [or (18)] reveals at once that the relationship between u,
and T, satisfying the momentum and continuity equations simultaneously

is that of a parabola and that the temperature of the gas mixture attains
the largest possible value for a given set of initial conditions when

u, =1/2 uK?ﬁg . Thus we have

o) _ (0.5u{8))* (31)

m,max Rm

Furthermore, we note [see Eq. (18)] that for each possible temperature
of the gas mixture there are two different speeds which the mixture may
attain. This fact requires special attention; it is necessary to know

29
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whether both solutions are physically possible and what processes they
represent.

Turning now to the energy equation [Eq. (29)] we recognize at
once that the range of possible speeds of the gas mixture is given by
the following condition:

- H-Eo) *
Osuy, = Z X3 u% + 2R;Ty (‘_.R'I-'g)‘ . (32)
i=0

The maximum gas speed, u,, according to the energy equation is attained
when the temperature of the mixture becomes zero., Thus we write

n Ty
H=-E E
2 Xy [u% + 2R;T; —§TQ)1 ] = Ué,%ax . (33)
i=Q

The gas speed becomes zero when the temperature reaches its highest pos-
sible value, which, according to Eq. (29), is

ORI Y (34)

,max - T
2 2 s (%)
1=0

i

The relationship between temperature, T,, and speed, u,, according to
the energy equation can now be written in the simple form

uS‘E) i J [um?%ax]g - 2R, T, éo N1 (%)Tm . (35)

According to this equation the speed of the mixture decreases steadily
as the temperature is increased from T, = O to its maximum value as
given by Eq. (34). :

For the case of a simp{e tangential (o4 = 0) injection of hydrogen
into a flow of ox ﬁen the umE) versus T, [Eq. (35)] relationship, to-
gether with the uX -C) versus Tm [(Eq. (18)] relationship, are depicted
in Fig. 10 for two different injection speeds (uH2 = 200 m/s and

uH-2 = 700 m/s). Since the actual flow of the gas mixture must satisfy

all three fundamental equations (namely, continuity, momentum [Eqs. (17)
or (18)], and energy [Eq. (35)]} only those points common to both curves
represent possible conditions of the flow of the gas mixture.

Figure 10 reveals that there are L possibilities; i.e.,

(1) the two curves do not intersect at all as in the case for which

uH2 = 700 m/s,

30
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Fig. 10 - Relationships between final temperature, T,, and gas speeq,

Tm

u,, of mixture (subsonic flow)
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(2) the u&E) versus T, curve is tangent to the uSM'C) versus

T. curve (uH2 = 4bR2.5 m/s),

(3) the two curves intersect at two points (uH2 = 200 m/s), and

(4) the two curves intersect only at one point (uy (E) (M'C))

When the two curves have no point in common, there is no solution because
the mixing of the flows leads Lo choking. In other words the mixture
cannot pass through the channel without proper adjustment of the initial
conditions.

When the two curves have only the point in common where they are
tangent to each other (possibility No. 2), the Mach number of the mixture
is one (see Example No. 1). The point of tan ency occurs always at a

temperature which is sllghtly less than é and at a speed which is
somewhat greater than m,max. For the’ case that the final gas tem-
perature is equal to T max the Mach number of the flow is less than one,

as the following calculatlon shows:

geo)  Falid) 3l 1
,Max _ = (36)
s (BT .

where the value for TéMmC; as given by Eq. (31) has been used. The point
of tangency may be conéldered as the critical point since it is the lim-
iting point of unchoked flow. Choking would occur at once when the speed

of one of the two gases is increased slightly. The condition of choking

‘can also be produced or relieved readily by variations of the tempera-

tures, injection speeds, mole fractions of the constituents, and injec-
tion angle. It is obvious that the choking condition is more quickly
produced with normal injection because of the constant area condition
(see Example No. 3).

When the two curves have two points in common, there seem to be two
different final flows for a given mixing process. For initially subsonic
flows the solution with the higher temperature T, and lower speed u,

(see Fig. 10) represents a subsonic flow (M, < 1), whereas the solution
with the lower temperature T, but higher speed u, represents a supersonic
flow (M, > 1). To determine whether both solutions represent physically
possible processes it is necessary to calculate the entropy changes re-
sulting from these processes. These calculations reveal that steady
subsonic flows cannot be made supersonic by mixing because this transi-
tion involves a spontaneous decrease in entropy. Such a process could
be accomplished only by an expansion shock wave which is physically im-
possible., On the other hand an initially supersonic flow may remain
supersonic or it may become subsonic by experiencing a normal shock
transition (see Example No, 2).
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E When the initial speeds are low or, more generally speaking, when
1T the ordered motion kinetic energy and momentum are negligible in compar-

1 ison with those of the random motion, the maximum possible speed from

| the momentum equation [Eq. (30))] becomes larger than that derived from

E | : the energy equation [Eq. (33)] and consequently the two curves have only

§1 one point in common in the positive coordinate quadrant. In this case

= x only the subsonic solution exists; the second solution (supersonic;

A expansion shock!) involves a negative temperature.

In many respects the ugE) - T, and u(M ~C) - T, curves may be con-
sidered as the counterparts of the Rayleigh and Hugoniot curves (in the
p-v plane) for constant area duct flows with heat exchange or the Fanno
curves for constant area duct flows subjected to viscous interaction at
the duct walls., However, it is impossible to state how the various
points of the u, - T, curves can be obtained by a certain mixing process
because of the large number of initial parameters (uy, T3, X3, 7773, and
0;) whereas Rayleigh, Hugoniot, and Fanno curves result from the varia-
tion of a single parameter (heat exchange or friction). Therefore, any
change of any of tz parameters of the i?itial gas (xg, ug, Ty, My)
changes both the u E)". T, and the up - T, curve (see Fig. 10) whereas
a change of g does not affect the Rayleigh line.

According to the previous discussions it is obvious that the tem-
perature T, and speed u, of the gas mixture can be calculated by means
of several different iteration procedures. The basic problem consists
in finding a solution for two variables which appear in two equations
which must be satisfied simultaneously but cannot be combined readily
because of the complicated mathematical relationships between these two
variables.

The solution requiring the lowest number of iterations is based on
the fact that a rather reasonable value of the gas speed, u, can be cal- :

RT
only slightly with temperature and that the temperature of the mixture,
T., cannot exceed,the lower of the maxima given by Egs. (30) and (33).

Substitution of T(M-C) from Eq. (17) into Eq. (35) leads to a quadratic
equation in u, with the solution

T
culated when it is assumed that the temm 2: N1 (E:EQ) = Z: changes

& b 21 ySaaet v dinia i e R s SO
2 . A% ;)

4 R .

B e

o i wiB) Vo |
b Um,max j
| 3
! where :
n T '
, H-Eo\™

5 L= ;é% N1 ( RT ), (38) i
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For subsonic flows the positive sign in front of the radicand leads to
the physically impossible expansion shock wave. Furthermore, we note
that Eq. (37) has real solutions only when

wodag) < 22 (39)
“m?ﬁgx g

This condition may serve as a simple criterion to determine whether
choking occurs or not. For a quick answer to this question Fig. 1l was
prepared. It depicts the dimens%%?lesg

u & Um 2
speed ;TETES as a function of (—(ﬁ%%§> for various values of ©. For a
m,max Ym,max

calorically perfect gas £ is independent of temperature and no iteration
is required. When £ depends on temperature, the accuracy of the gas
speed calculated by means of Eq. (37) depends on the accuracy of the
estimated temperature and the rate at which ¥ depends on temperature.
With the fairly close approximation to the correct gas speed of the mix-
ture, as given by Eq. (37), the temperature, as given by the momentum
equation [Eq. (17)], is calculated. This temperature is now used as

the st?rging oint of the iteration procedure by calculating the differ-
ence u\E) - u{M-C) - au. by Tean? of Eq. (35) and Eq. (18). For subsonic
flows and for all u, < 1/2 umM;gx this difference is positive when the
temperature is less than the dorrect value and vice versa. For subsonic
flows and u, > 1/2 Mﬁg this difference is positive when the tempera-
ture, used for calculdting this difference, is greater than the correct
value and vice versa (see Fig. 10 and Table 6), _The calculations are
repeated with properly adjusted temperatures T&m), until

Iu&E) - u&M'C)I e,

where ¢ is a small number which should not be smaller than warranted by
the accuracy of the thermodynamic functions used in these calculations.

After the correct values of the final gas speed, u,, and temperature,
T, have been determined, the static pressure of the gas mixture, p,, can
be calculated by means of Eq. (5) from which the channel cross-sectional
area, A,, is removed by the following relationships:

An

n
Ao + ). Ajcosay ,
i=1

" KT,
- ho = ito gt » and

i iR

Bsicrel.
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Teble 6. Iteration for calculation of T, and u,

(&) w, = o2 /s
with T{EST) - 650 K we obtain from Eq. (37) ufl) = 736.8 m/s;
with T{EST) _ 4o K ve obtain from Eq. (37) uwl®) = 745 m/s.
Tnen from Eq. (17): (1) = 7{M-C) _ net! (1303 8 - ul)) _ 643 K
and 641 K, respectively.

a [ o) | o0 u{®) a$®
1 643 737.47 738.30 0.83
2 642 741,18 Th1.52 0.34
«subsonic
3 61 T4 .75 Tl .73 -0.02 solution
L 640 748.19 T47.92 -0.27
5 639 751.50 751.10 -0.40 i
6 638 754 .71 754,26 -0.45
7 637 757.82 757.41 -0.41
8 636 760.85 760.55 -0.30
NG 635 763.79 763.67 -0.12
«supersonic
10 634 766.65 766.78 0.13 salxticn
Subsonic Solution: T = 641.05 K, u, = T44.56 m/s, M, = 0.9840
Supersonic Solution: = 634.48 K, u, = 765.24 m/s, M. = 1.0164

-
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Table 6. (Continued)

(v) uH = 100 m/s

- 7{EST). 700 K we obtain from Eq. (37) u{l) = 292.3 m/s.
Then from Eq. (17) T.(,l) = 735.7T K

n T,g,n) u,gM'C) u,S,E) A u®)

() (m/s) (m/s) (m/s)
1 735 291.990 284,266 =7.724
2 734 291.507 292.628 1.121
3 734.125 291.567 291.596 0.029

Solution: T, = 734.13 K, u, = 291.58 m/s, M, = 0.3611

so that
i R
Pa = o . Fan . (40)
U S Wi
Y + cosq
"0 Do Mouo iZ=:l P31 7Mguy ;

Upon division of numerator and denominator by m and cancellation
of ® we arrive at

1 T
Pm = & WJ;_ ' (hl)
XQTQ Z XiT! m " Um
Po Mouo Wuy © oM
According to Eq. (28) we have
ot o Jhe
?77! 777“

Substitution of this relationship into Eq. (41) leads to

37
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Pn = i (hZ)
naTy
b [Po“o 2 Pjuy cosai]

The ratio of the duct area through which the final flow of the mixture

(m,A,) passes to that through which only the primary flow (ig,Ao)
passes can be calculated as follows:

n
from An = Ao + ), Ajcosq; ,
i=1
NoRT
with Ap =
© = oo’y
RT
and e O
17 pug;
we obtain
n .
A: Zﬂ-&.&.k.ﬁcosai.
iS4m0 To P wg 7y

With ﬂ‘li = Ih'Xi and Xy = N1 (ml/mm)

we arrive at

n
Ap _ n.h .ok . %, ;
Kg 1% igl = To B ey (43)

The increase in entropy caused by the mixing of different gas flows
follows from the expression for the entropy of gas mixtures. Before
mixing we have

= f: X381  (lb)
i=0
wherg
8y "773" [(Sp:l)i - "”lpz] . (45)

After mixing we have
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n p=1\Tn n
R P S z:
e i=C ui (T)* = Yol =~ o, (46)

n foP=1\Tn (kl)'rz n n
Sy-8 _ S i S . " Py . 47
g 2 N ( R )1 7/, EO nilnng 12;6 ol 08 (47)

2. Mixing of Gases at Rest

The previous equations can be used also to calculate the temperature
resulting from the mixing of gases at rest (up = O and all u; = 0). When
the gases are not flowing, only the energy equation is available for cal-
culating the final temperature T When the pressure is held constant,
Eq. (33) can be used. For ug = = 0 we obtain

Ty
(]fgxax J Z X3R3Ty < gg ) * (48)

Substitution of this expression into Eq. (34) leads to

n

- \To
.z: X3R4Ty (‘H—'E)

pstatic,dp=0 _ i-0 QKT

. . (H-E)

. (49)

With
TS
i Mm
as given by Eq. (28), we obtain

n

2a _H_E_g
=0 174 ( RT

R ¥

At constant volume the internal energies, E;, instead of the
enthalpies must be used. With E = H - QT we obtain

T4
pstatic,dp=0 _

39
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pstatic,dv=0 _ 1=0

3. Mixing of Gas Flows Involving Chemical Changes

When chemical reactions occur as the gases are mixed, the calcula-
tions become much more tedious. First of all the reduced sensible en-
thalpies in the energy equation must be replaced by the reduced formation

Mg\
enthalpies, ?ﬁ; . Only the case that the final gas mixture is in a
< i

state of complete thermodynamic and chemical equilibrium will be dis-
cussed here. Since the composition of the reacting gas mixture depends

not only on temperature but also on pressure, the calculations must be
started with estimated values of the final temperature, T,, and the
final pressure, p,. The subscript ¢ is used to stress the fact that
chemical reactions have been included and to distinguish this state from
the non-reacting mixture for which the subscript m is being used.

With the estimated values of temperature, Tél), and pressure, pél),
the composition (ﬁl ¢) of the final gas is calculated according to the
standard procedure. Then, according to the energy equation [see Eq.

(35)1, the gas speed uc, is calculated for this temperature and composi-
tion;

uéE \/[um llmlt] = 2ReTelng, e (%%F)TC > (52)

where

(E).:I.mit \/z, X4 u, + 2RyTy (%%f)m] . .(53)
(E)

For exothermic chemical changes the speed Um, 1limit is no longer the
largest possible value. At low temperatures the sum of the formation
enthalpies at T, in Eq. (52) may become negative. Therefore, the sneed
T
(E )1imit is reached at a temperature where 2: Ni,c (%%f)ic is equal to
i=0

zer For lower temperatures uéE) exceeds the so-called limiting value,
ux 1imit. Whether these conditions represent physically possible solu-
tidns cannot be said in general. Since they can occur only in subsonic
flows (these temperatures are lower than the constant pressure adiabatic
flame temperatures) it may be expected that these low temperatures lead
to the impossible expansion shock.

4o

T 0 ST
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Since the calculations can be started only with an arbitrarily
assumed pressure, the correct pressure must be established by iteration.
According to the continuity equation the pressure must satisfy the condi-
tion [see Eq. (3)]

e R e )

where 1’% is given by the thermodynamic and gasdynamic values of the ini-
tial flows before mixing. With

n
Ap + Z Ajcosay

A, =
i=1
and
m QKT
Ry ol e
¥ P Myu g
we obtain
Km_ - : " (55)
m
Eam_%' + B | dean
Po olo n=1 Pi R s

Upon division of numerator and denominator by m and with Eq. (28) we
arrive at

T 1
;T':: = n T ) (56)
L cosai]
! Pouo i=1 bPiuy !

n
vwhere 77, = Z n,’lm 1 is the molecular mass of the unreacted mixture.
i=0
Substitution of Eq. (56) into Eq. (54) leads to
pc = —e ,n:)mTC

e - (57)
Nolo sl
uc’”k [Pouo * 12-_-:1 biuy cosa;]

Thus the pressure corresponding to the assumed temperature, '1‘((31), is

SR -

B S
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(1)
Pé%galc. T 77LTcn o Taretd (58)
(E)rm [g%u-g Zl mpsza cosa;]
i=

For the selected temperature (Tél)) of the chemically reacting gas mix-
ture an increase in pressure reduces the amoun? ?f dissociation as long
as at least one of the mole number changes, Av\Y/, of the o chemical
changes occurring in the mixture is not zero. On the other hand a de-
crease in pressure increases the amount of dissociation in this case.

Because of this effect the molecular mass, 7%, = Z i, c777 (z = number

of species in equilibrium mixture), and the speed, éE), will increase
as the pressure is increased and vice versa. Consequently, the pressure
calculated by means of Eq. (58) will decrease when a higher va%ue is
used for the estimated pressure. Therefore, a new estimate, p 4 can
be obtained as a simple average of the calculated and estlmateg val ues ;

et = (ROl w3l - 0 (59)

When the composition of the reacting gas mixture is not affected
very much by pressure variations, the iteration formula [Eq. (59)] may
be replaced by the expression

e =20l o) o] <0 @

where x is an empirical factor between O and 0.5. The iterations are
continued until the difference between calculated and estimated pressure
satisfies the condition

(")

%6, (61)

calc c,est

where ¢ is a small number in accordance with the desired accuracy. After
the correct pressure, p,, has been determln?d it is necessary to check
the validity of th? Sempera ure estimate, . To perform this test
both gas sp?e?s, and uj , are calculated with this temperature
estimate, T and the corresponding pressure, p,, by means of Eq. (52)
and Eq. (18}, which now is written as

afMc) _ 1 (M-C) \[[1 (M-C) 5 F R 62)

where, as in the non-reacting case,
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- RoT R.T
“é?mg; = XgUo (l + —ﬁgg)-+ Y xguy (1 + "ﬁ%i) cosQy .

i=1

However, the maximum temperature, Té?ﬁg%, must now be based on the molec-
ular mass of the mixture of the products formed by the chemical changes
at this temperature. Therefore, instead of Eq. (31) we have for the
reacting mixture

(M-C)TP
) - Lot Monc) - e
(M-C)

Because of this relationship the temperature, T, [ -~, can only be esti-
mated. Actually a rigorous value is not needed.  However this tempera-

ture limit may be of some help in establishing the first estimate, Tél),

which must be lower than this limit although it is not possible to state
how much lower it should be. If Augn) = uéE) - uéM'C) # O, the calcu-
lations have to be repeated with T§n+l) > Tén), when Auén) > 0 for

subsonic flow and u, < 1/2 ué?ﬁg%, whereas Tgn+l) < Tén) when ngn) >0

for subsonic flow and up > 1/2 ugMﬁgl. When Auén) < 0, the opposite

changes in temperature must be made. For supersonic flows, positive

values of Augn) indicate that the temperature estimate, Tén), was too
low and vice versa. The iterations are continued until ]Amén)l s €
where ¢ is again a properly chosen small value.

To illustrate these techniques let us consider the floﬁ of oxygen

(primiry flow) to which hydrogen is added at various conditions (Example
No. 1).

Approximate values of the final speed of the gas mixture, u&l), as
calcuiated from Eq. (37) with estimated temperatures obtained from
Table 7, are compiled in Table 9 together with the rigorous calculations

of Tny Uns DPuns Mas f%i, and the increase in entropy, %E. This table
2 m

reveals that approximate values of the gas speeds deviate in most cases
by less than 1% from the exact values. The estimated temperatures, of
course, are less reliable., Table 10 a and b have been irncluded to show
the rate of convergence of the iterations leading to the correct values
of u, for vy = 492 (m/s) and uy, = 100 (m/s), respectively. For

uy, = 492 (m/s) the iteration producing the supersonic solution (impos-

sible expansion shock) has been included in order to show that this in-
Jection speed produces two solutions which are very close to the critical
conditions (M, = 1) at which the flow becomes choked. For Uy, = 493 (m/s)

k3




EXAMPLE 1

A subsonic flow of hydrogen is injected tangentially into a subsonic
flow of oxygen. :

The initial conditions of the oxygen flow are:

T02 = 1400 K
M02 = 0.8735
3 ug, = 600 m/s
; p02 = 1l atm

Moy = 0:36 (%0, = 0.9) 7 = 32 ke/xmol
The initial conditions of the various hydrogen flows are:

Ty, = 200K (for all speeds qu)

: L uy, = 100 m/s My, = 0.0918
= 200 m/s = 0.1836
"[\ = k40O m/s = 0.3672
g' A = U450 m/s = 0.4131
L = 490 m/s = 0.4498
1
U = 492 m/s = 0.4517
;{? = 1l atm . %
g | pHZ ; S
? I“HZ = 0.6)4 (tz = 0.1) 777“2 =2 kg/lﬂnol 3
1, (M=Cc) (M-C) _(E) (E) u(E) 1 § o
The values of Vg mays> Tm,max> Um,max> Tm,max, @nd —?ﬁ?§§ for the seven =
iw Um ,max 3 ¢
TI} different hydrogen injection speeds, uy,, are listed in Table 7. For if
the temperatures, which the final flows are estimated to attain, the g~
b l} H-Eo\T -
u values of ) = §:ﬂ1,1 -\, and the functions of £ appearing in j' :
' Eq. (37) are compiled in Table 8. |
1 -
i oy =
13
ﬁ I3
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Table 7.

Parameters for calculating flow mixing

| | | e | e | (%)

Um,max
100 1927.1 1&29.3 1860.9 49 0.9325
200 15.21.3 8%0.8 1861.7 750 1.4974
400 1333.5 684 .4 1864.8 753 1.9958
450 1315.4 665.9 .1866.0 754 2.0124
490 130%.3 654.8 1867.0 755 2.0489
Lk 1303.8 654.3 1867.1 755 2.0506
0 |1ema | esa | 18137 | 760 2.1618

. Table 8., Reduced sensible enthalpy of initial gases

@ | 2= (5R), | = | =
500 3.h884 2.0358 0.5837
600 3.5108 2.0L69 0.5830
640 3.5200 2.051k 0.5828
650 3.5;23 2.0526 0.5827
- 660 3.5246 2.0535 0.5827
680 3.529 2.0558 0.5825
700 3.5338 2.058 0.5824
750 3.5454 2.0638 0.5821
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Table 10. Iteration for calculation of T, and u,

(a) vy, = 42 m/s ;

with T,(,EST) = 650 K we obtain from E(;. (37),

u.(.l) = 736.8 m/s H
with T(EST) . €U0 K we obtain from Eq. (37) ull) = 745 m/s

Then from Eq. (17): T,(.l) = T,EM'C) > 9_«(}_)_@1?‘_;3-_\_&2 = 643 K

, and 641 K, respectively.

g z(») u{M-C) ufE) A0
: (k) (m/s) (m/s) (m/s)
1 643 737.47 738.30 0.83
2 642 741.18 Th1.52 0.34
«subsonic
3 e 4 .75 744,73 -0.02 shAGTIon
y 640 748.19 T47.9%2 -0.27
5 639 751.50 751.10 -0.40
6 638 754.71 754.26 -0.45
T 637 757.82 757 .41 =0.41
8 636 760.85 760.55 =0.30
9 635 763.79 763.67 -0.12 :
«supersonic
10 634 766.65 766.78 0.13 SR

Subsonic Solution: Ta = 641.05 K, u, = 744.56 m/s, M, = 0.9840
Supersonic Solution: T, = 634.48 K, u, = 765.24 m/s, M, = 1.0164
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Table 10. (continued)

(v) vy, = 100 m/s ;

with TﬁEST) = 700 K we obtain from Eq. (37), usl) =292.3 m/s ;

Then from Eq. (17): T$%) = 735.7 k

¥ n
e (‘?n}(l/s)>
1 735 291.990 28l4.,266 -7.724
2 734 - 291.507 292.628 1.121
3 734.125 291.567 291.5% 0.029

Solution: T, = 734.13 K, u, = 291.58 m/s, M, = 0.3611

there is no solution. Hence, choking begins at injection speeds between
492 and 493 m/s. Because of the large number of initial parameters of
the flows it is not possible to prove analytically that at the point of
choking the two curves become tangent to each other. However, a graph-
ical presentation of the conditions near choking in the u, - T, plane
shows that the condition of tangency exists at M, = 1. At the point
where the temperature T{M-C) reaches its maximum (ug, = 450 m/s) we have

M, = V% (see Table 9). The effect of the hydrogen injection speed,
ug,s on the final state of the mixture is shown in Fig. 12.




. 640 k> ” Mm '
-400" 08" ! L ' 50.5
u, (M/s)= 100 200 300 400 500
]

M, = 009180 0.275403_ 0459005
Vi, 0183602 ~  0.367204

Fig. 12 - Effect of injection speed (C‘He = 0) on final state of mixture
(Exeample 1)
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EXAMPLE 2

It

A supersonic flow of hydrogen is injected tangentially into a
1 . supersonic flow of oxygen. The initial conditions are:

; uy, = 2000 n/s up, = 1400 m/s ;
. ' Ty, = 200 K Tp, = 1000 K :
, : pﬂz=latm p02=1atm
My, = 1.8287 - : Mo, = 2.3969
Ty, = 0.6k Mo, = 0-36

For these conditions we have

uxghfﬁ(a:)): = Zl: Xguy (l + Bé%‘*) = 1668.60 m/s ,

ke ) P

i=0
(E : H-Eo ) !
um,lzlax = Z xg | uf + 2R,Ty ( RT = 2121.17 m/s ,
i=0 i 1
4 (M-c) )2 . ;
{ o - gﬂ“,{f_’mﬂl - 107159 K

n(x?n)xax ( (Ezmx)z =~ 962 K, and
2R, 12: N1 (H-E )T

(ﬁ_(éa) - L0 .

smax

RS

According to Fig. 11 solutions exist since £ > 3.5. Assuming f

= 600 K (£ = 3.5108) for the ‘supersonic solution, we obtain from
Eq- (37) (+ sign),

e

A I
3 3
£ T e e At A B et A

i Sk Lk i
-

ult) = W19 m/s .
With this value the fizjst temperature estimate according to Eq. (17) is -
(1) - su5 K .
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Although these curves represent relation

Iteration leads to u, = 1417.72 m/s and T, = S47.63 K, M, = 2.0224% so
that according to Eq. (57) pa. = 1.202814 atm. Assuming Ta = 900 K
(z = 3.5803) for the subsonic solution we obtain from Eq. (37) (- sign),

u?) = 511 /s .

With this value the first temperature estimate ac

cording to Eq. (17)
becomes

o) - g1k . :

Iteration leads to u, =

510.91 m/s and T, = 910.58 K so that M, = 0.5701
and p, = 5.549776 atm. ;

The ratio of the pressures of the two solutions is

(M<1)
VST = 4.613994 .
Pn ¥
According to the normal shock relationships for a gas with variable
specific heats we have

(%)N.s. 2 (%)NS e 0.5) - (L™ - 0.5) +

Ty /N.s.

. e e

H-E E
vhere 5T = Ing - (-ﬁfg), .

with 7 = <) _ 910.58 k ana 7, = o1 _ su7 63 ¢ :

we have T2 = 3.583 and £T1 = 3.499 ,

8o that (Ba)“ = b.614 ,
Py/n.s.

whick is an exact agreement with the ratio of the pressures of the two
solutions;

The curves of u&M;c) versus T, énd usE) versus T, are shown in Fig. 13.

ships between the final
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2000

=
1900 |-
N G 4, 22000m/s T, =200K M, =1.8287 7, =064
i Uo,F400M/s To=I000K My, 23969 70,20.36
1600 FINAL FLOW IS SUPERSONIC
T.,.1:547. 63K 3 ;
1500 - U 1= 1417.72 m/s } Mas® 20204
1400 |-
1300 |
1200 |
Q 1100 -
E 1000}
3 900
800 |-
| FINAL FLOW 1S SUBSONIC
700 [~BECAUSE OF NORMAL SHOCK :
600 |- T 2=91058K }
500l Uma51091m/s Mn,2=0.5701
400 |
300
200}
100} FROM MOMENTUM -—FROM ENERGY
EQUATION 1 . EQUATION
0 | - Sl it [l 1
O 200 400 600 800 1000
To [K]

Fig. 13 - Relationships between final temperature, T,, and gas speed,

u,, of mixture (initial flows are supersonic)
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temperature and gas speed, only the points common to both curves are
related to the initial conditions; all other points have no relationship
to them. Also, because of the reduction in number of variables from

Tss Pis U3 to Tpn, Pmsy Uy it is not possible to present graphically the
path from the initial to the final conditions.

EXAMPLE 3

A subsonic flow of hydrogen is injected normally into a subsonic
flow of oxygen. The initial conditions -are

uy, = 200 m/s v, = 300 m/s
Ty, = 200 K T02=1hoox
phe =1 atm Pba =1 atm
My, = 0.182872 Mo, = 0.436736
Ty = 0.64 s = 0.36

The linear speed of the primary flow (oxygen) in this example had to be
much lower than that in the first example (tangential injection) in order
to avoid choking even when the hydrogen is added at a very low speed.

With the initial conditions as given above we have

T,
ug,ﬁ;g])‘ = Xo, * Yo, (1 + R—%%?) = 1361.255812 m/s

and

1 9 Ty |
“:g?%ax = [X x [u% + 2RyT, (}%Q); ] = 1795.22 m/s ,

and thus

e
max
W = 1.7392 .
,max
According to Fig. 11 this speed ratio is well below the critical value
leading to choking when £ 2 3.5.
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Auégﬁgl to 1178.4k4 m/s and increases

For the maximum temperature we obtain

(M-c) - 713.185023 K
T:ﬂax = 702 K (Z = 3.53376 @ 700 K) .

In accordance with these values we use an estimated temperature of
600 K for which £ = 3.5108 and thus from Eq. (37)

ul?) - 485.95 w/s ,
and according to Eq. (17)

72 _ 654.8 x .

Iteration leads to

T. = 653.16 K
M, = 0.632804
u, = 483.19 m/s
and
P = ']:‘,l To = 0-80)4623 atm .
Uy v RS2
p02u02

An increase of the oxygen speed, 29 from 300 to 40O m/s, reduces
EZax to 1812.68 m/s, so that

(f_‘,;%ﬁ) - 2.3%,

which, according to Fig. 11, means that the addition of hydrogen to this
flow causes choking. On the other hand, an increase of the hydrogen
speed, uy,, from 200 to 800 m/s, raises the final Mach number by 2.56%

(from 0.6328 to 0.6490). The final conditions for this case are
T, = 662.5 K

M, = 0.6490
u, = 499 m/s

Pa = 0.7903 atm.
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EXAMPLE L4

A subsonic flow of hydrogen (MH2 = 0,0918) is added tangentially to
a subsonic flow of oxygen (Mo2 = 0,2912). Calculate the final state of

the mixture after combustion has occurred and complete chemical equilib-
rium has been established.

Because of the high combustion enthalpy of hydrogen, choking occurs

at the oxygen speeds, Yo, s used in the previous examples, Using the
criterion

(64)

q . 1
cpTn . 2(7+17(Mm B M,) 5

which applies to constant area duct flows with heat addition, it was

estimated that

the following initial parameters would not lead to choking:

vy, = 100 m/s U, = 200 n/s
Ty, = 200 K To, = 1400 K
The final state of the gas mixture was calculated by two methods:

(1) First the state of the mixture was calculated without consid-
eration of any chemical changes according to the procedure explained in
the previous examples. Starting then with these uniform conditions

. (denoted by the subscript m) the final state (denoted by the subscript
c¢) was determined by finding for a constant area duct flow (A, = Ap) the
pressure and temperature ratios which satisfy simultaneously the Rayleigh
line (momentum equation from which uc has been removed by means of the
continuity equation),

&8 Ly 2

Pa & u

55, bt ok - T (65)
Vv

and the Hugoniot curve (energy equation from which both speeds have been
eliminated by means of the momentum and continuity equations),

Tm

bekal)fen) e
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where

o
vm

%np.m%n (67)

m pc c

Both the Rayleigh and Hugoniot relationships contain only Te and pe

as the unknown variables. However, an explicit solution cannot be es-
tablished because of the complicated relationships between these variables
and the formation enthalpies

T m 2 T ]
h T 2: PA: |
‘R—m%; = -——-Tm o el i=0 -n.i (Wl‘i)i . (68)

Therefore, the two equations (65 and 66) must be solved simultaneously
by an iteration technique which has to be started not only with an esti-
mated value of the final temperature, To, but also with an estimate of
the final pressure, P,-

With these estimates first the composition (n; ,) of the final gas
is calculated (see Worksheet No. 1). Using this ccﬁposition we must
determine whether the estimated pressure, together with the estimated
temperature, satisfies the Hugoniot equation (66). This test is per-
formed by determining a so-called calculated pressure from Eq. (66).

In deriving the expression for the calculated pressure, Pascales the ef-
fect of pressure on the formation enthalpy of the final gas mlxture is
ignored. Thus from Eq. (66) we obtain

) e = Pa [a + \/; + St . ,)”n?c} (69)
“where
Me = 2y M
and
The superscript (n) denotes the nth estimate. If p( ) i ¥ p((: gst, the

calculation of the composition is repeated with adJu ted values of the
estimated pressure, p s but the same temperature T 1 . Since the ef-

fect of pressure on the formation enthalpy of the final gas mixture is
usually not very large, the calculated pressure is, in most cases, fairly
close to the correct pressure so that successive estimates may be obtained
by the formula

pg?:l % pg?zst (Pgnz ale - pé?zst) ’
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WORKSHEET NO. 1

Procedure for Calculating the Mole Fractions, n4, of a Combustion Gas in Equilibrium
Containing the Species: H0, Hp, Oz, OH, O, and H

® (-« . gx.oaunss i) = 300K  T.=685.2K

@ x(Hz0) . g(He0) . p;’;- = 17.0635% P, = 0.6 atm P. = 1.0042 atm

&) O _ 1 1067 :—gi = 0.5625 M, = 12.81024 kg/kmol
® x® .k . gs 2 0.203203 M. = 0.2298 Bl

ml
—[:DJ . = 1y, = 0.078400 32.000

Assume: "“Oazn ) - 0.28

Q-6+1-03|H a-o =1, = 0,040652 - [2] 16.000
m-®+u.,@(—)’°-5-[ﬂ

m —bm . m . @ =Ny = 0.116158 17.008
‘[@*2]"’1' —-—-ﬁm'@ - =6.070'4h3 m 1.008
[ + @2}0'5 - E]] =— 00 -0 - Ny, = 0120175 E] 2.016
‘@ - @ =y, -o5mar [ 18.06

one = 1.000000
M, = The, My = 15.792409 kg/kmol

A 10 .(@+@+@)'°'5+m2-§a-o.m1066[:{:]
%% (+E}'_|)-o.5+[§_]+ Ve
1¢ [7] # 0, Repeat Calculations with ,’qgg) - ,,qg:) (L-@-2)-0

If More Than Two Iterations are Required to Make Iml < 0.001, Use Linear Interpolation
as Pollows (For n 2 2):

A(n) A(n'l)

- @ aw & NED
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where 0.5 = X < 1. The iterations are repeated until

n o mkB)
|p£,galc Pe estl < €, where ¢ is again a small number which must be

chosen properiy. A rather accurate value of the pressure can be obtained

by linear interpolation between two pressures for which the differences
(m) pogs! ) e [y (n-1) _ ,(n-1) = A(n-1)

pc,calc pc,est =4 and pc,cazc pc,est =4 are small. In this

case we have

(@) p(n-l)

P, = p(n-ll - aln-1) | ¢

c,es n

AV g

To begin the calculations with temperature and pressure estimates
which guarantee a rapid convergence to the correct values, we calculate
first the adiabatic flame temperature (see Table 11) of the mixture
(initial state m) at constant pressure when the flow is subsonic
(M, < 1) and at constant volume when the flow is supersonic (M, > 1).
For subsonic flow this temperature applies to the case that s.r. = 0

[see Eq. (65)] and for supersonic flow the constant volume (%ﬂ = 1) adi-

m
abatic flame temperature makes the speed ratio (s.r.) infinitely large.

For subsonic flows the adiabatic flame temperature at constant pressure
is only slightly larger than Tc, and Po is only slightly less than p,
because heat addition to a subsonic flow has a mildly expansive effect,
whereas for supersonic flows T, is much higher than the adiabatic flame
temperature at constant volume, and p, is many times that of p, because
heat addition to a supersonic flow has a strongly compressive effect.

After a compatible pair of %ﬂ and %ﬂ values has been obtained from
g m m

Eq. (69) by iteration, it is used to calculate the dimensionless speed
of the initial gas, s.r., according to Eq. (65). If this calculated
speed ratio (or éts square) differs from the actual speed ratio of the

initial gas, ﬁg%_ s all previous calculations must be repeated with an
m+m

improved estimate, Tén), of the final temperature, together with a new
v?%gé for p,. For subsonic flows the speed ratio, s.r., is increased as

e

To ° is decreased and vice versa. Therefore, we have
(n+1 (n) {
Te,est < Tc,est » () ¢
:
when ;
R :
(‘oro) < b (’72)
RnTm

culate the Mach number, M,, of the final flow to make sure that it is
less than one. The solution with M, > 1 has no physical significance

!

‘ g
and vice versa. Since there are two solutions, it is necessary to cal- ;;§’

¥
because the transition from subsonic to supersonic flow by means of heat :
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Table 11. Calculation of adiabatic flame temperatﬁre

0.64

"y, = oy = 0.36 Pn=1.0042 atm T, = 685.2 K
. T,
M, = 12.81024 kg/kmol %3%7-_ 8.063347 . For the case

that u, = O and P, = Pm We have T, = 3115.9 K as shown by
the table below:

T h:
(x) Beln
3100 6.43
3110 7.44 T
= 3115.9 = ITfT_ 8.063347
3120 8.47
3130 9.52
3140 10.58

addition in a constant area duct, although mathematically possible, can
occur only when an expansion shock wave is involved which entails, how-
ever, a spontaneous decrease in entropy.

For supersonic flows both solutions are physically possible. One
solution represents supersonic flows (M, > 1) for which the temperatures
and pressures are only moderately higher than those of the adiabatic
combustion at ?o stant volume. For this solution the speed ratio is
increased as Tcn is decreased, and vice versa, so that the relationships

[Eq. (71) and (72)] apply here too. For the second solution leading to
Me < 1, because of a normal shock wave, the final temperature and pres-
sure are much higher than those of the adiabatic flame temperature at
constant volume. For this solution the speed ratio, s.r., is increased
as the temperature, T(n is increased, and vice versa. Therefore, it-
erations for this solution must be based on the conditions

én;sl > Téngst ’ (73)
when
(s.7.)% < 2, (74)
59
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and vice versa. The iterations are continued until

(s.r.)2 - _uz <e
Rm.Tlﬂ

3

where again e¢ is a small number chosen in accordance with the accuracy
desired and the limitations given by the thermodynamic data (formation
enthalpies and equilibrium constants) used in the calculations. A rath-
er accurate value of the final temperature can be obtained by linear
interpolation between two temperatures for which the differences

2
(s.xr.)® - Ru% = § are small. In this case we can write
m-+m

T
To = T8 st - 51) . Toyagt = Toe

e} - 9%

(2) In the second method, the details of which are given in Sec-
tion 3, the calculation of the state of the unreacted mixture is by-
passed. Therefore, it is more difficult to begin the calculations with

a reasonable estimate of the final temperature and pressure. Consequently

a larger number of calculations is required, as evidenced by the data
shown in Fig. 14. The results of both techniques are tabulated in Table
12. An increase of the speed of the oxygen flow from 200 m/s to 222 m/s
produces choking. The final conditions for u = 221 m/s are given in
Table 13. The physically impossible solution involving the subsonic-
supersonic transition is included to show how close this flow is to that
at which the Mach number of the combustion gas is one (Mc =1).

IITI. TRANSITION FROM DEFLAGRATION TO DETONATION

Most previous research!®~!9® on three-dimensional detonation waves
dealt with the decay of waves generated by ignitors having high power
densities. Since these observations are not necessarily pertinent to
the prediction of the transition from deflagration to detonation, exper-
iments were carried out in the Aeronautical and Astronautical Research
Laboratories of The Ohio State University to study the propagation of
deflagrations in practically unconfined hydrogen-air mixtures. Hydrogen-
air mixtures, contained between 0.004 inch polyethylene sheets draped
over a metal frame, were ignited in the center by an electrically heated
copper wire having a diameter of 0.003 inch. The energy transferred
from this igniter to the combustible gas mixture was sufficiently low to
allow the combustion process to start as a deflagration. Furthermore,
no metal vapor or hot particles were propelled through the combustible
gas mixtures, which in all experiments contained 29.5% hydrogen. The
flames were photographed on Kodak 35mm Tri-X film by a FASTAX camera.
According to Figs. 15 and 16 the flame speeds are given by the following
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Table 12, Mixing of a subsonic flow of oxygen

hydrogen followed by combustion

with a subsonic flow of

Initial State of
Gases before Mixing

Mixing without
Chemical Change

Combustion Gas in
Complete Equilibrium

ug, = 200 m/s
u, = 179.56 m/s u, = 957.05 m/s
vy = 100 m/s (9530 =
Ho =
To, = 1400 K
T, = 685.2 X T, = 3044.5 K
Ty, = 200 K (3046)
p02 = 1 atm
Pm = 1.0042 atm P, = 0.6881 atm
P, =1 atm (0.690)
Ha
Mo, = 0.2912 .
M, = 0.2298 M, = 0.6801
My, = 0.0918
s = 1.4386
Tm = 1.3721 e 1,2182
702 = 1.2972
Mo, = 32 kg/xmol
m = 12.8 kg/kmol ¢ = 15.5718 kg/kmol
My, = 2 kg/xmol
2,1 i "Ha,m = - My,e = 01256

(1) The values in parentheses were obtained by direct calculation (see

Section 3).
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Table 12. (continued)

Initial State of
Gases before Mixing

Mixing without
Chemical Change -

Combustion Gas in
Complete Equilibrium

oz, = 0-3

"oz’n = 0036

“0230 = 0.0m85

Mg0,c = 05535

Now = 0.1214

no = 0.0MI»].

qu = 0.0769

Table 13. Mixing of subsonic flow of oxygen with a subsonic flow of

hydrogen followed by combustion

Initial State of Mixing without Combustion Gas in Complete
Gases before Mixing Chemical Change Chemical Equilibrium
vy, = 221 n/s
—_— ua = 191.20 m/s u = (ggg)ﬂ/ 5
ug, = 100 n/s .
Toz = 1400 X v
T, = 686.0 K % -(gggg)x .
Tnz = 200 K
PO: = ] atm
: . tm
Pa = 1.0076 atm P, -(8.3359)‘“-
p& = 1 atm
%' - °om7
M, = 0.2uLs N .(g:g:gg)
L 0.0918
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Fig. 15 - Geometrical representation of how an image is recorded on film
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equation:
b-F] [Ty .7"h dh o
T I F l Tp 7ﬁu| dt . 2

where b is the distance between the camera lens and the ignitor, F is
the focal length of the lens, T, the temperature of the unburned gas,
T, that of the burned gas, 77,, and 77y, the corresponding molecular mas-

ses, %E the film travel per unit time, and & the half-angle of the cone
formed by the flame images on the film (see Fig. 17).

Measurements were made in bags containing 1, 2, and 4 m® of the
hydrogen-air mixture; the results are shown in Fig. 18. Whereas the
flame propagation rates in the 1 and 2 m® bags were quite reproducible,
a fair amount of scatter prevailed in the 4 m® volume. The most signif-
icant observation, however, is the fact that there is a noticeable ac-
celeration of the flame propagation (see also Fig. 17). This accelera-
tion, although quite modest in the 1 m® bag, is large enough in the 4 m®
bag that it may be assumed that a greater flame speed increase, possibly
resulting in a detonation wave, would occur in much larger volumes of
the combustible gas mixture. Unfortunately, experiments with larger
bags cannot be carried out at this laboratory because of the strong com-
pression waves which accompany these explosions and whose strengths in-
crease rapidly with bag size.

Experiments to measure the pressure rise at various distances from
the bags are in progress.

IV. QUENCHING OF DETONATION AND DEFLAGRATION WAVES

Because of the low gas speeds and small pressure changes produced
by deflagration waves, the principal function of a flame arrestor con-
sists of terminating the progress of the chemical reactions in the flame.
On the other hand a detonation wave is followed by the high-speed flow
of the hot combustion gas which is much more difficult to attenuate.
Furthermore, this wave involves a large rise in pressure which must be
dissipated by the arrestor in crder to prevent ignition of the downstream
gas by the shock compression. Therefore, arrestors designed to quench
a detonation wave must not only stop the progress of the combustion proc-
ess but they must also produce a drastic decay of the shock wave and
prevent the hot gases, which traverse the arrestor, from igniting the
downstream combustible gas mixture.

To study both effects independently, two different experimental
investigations have been initiated. First a shock tube has been designed
and constructed for measurements of the effectiveness of arrestors in
bringing about a significant decay of the shock wave so that the wave
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Fig. 18 - Flame speed as a function of bag size

67




I
|
i
g
i
1
i
I

1
i

1

emerging from the arrestor can no longer ignite the downstream gas.
Progress on this investigation has been slow because several graduate
students, after working on this problem, have decided to discontinue
their studies toward an advanced degree.

Another apparatus (see schematic views shown in Figs. 19 and 20)
has been designed and constructed for the study of flame quenching by
arrestors made of different materials, having various porosities and
configurations. The test section, as shown in Fig. 20, accommodates the
arrestor and has a rectangular cross-section. It is equipped with large
windows to photographically record the processes occurring at the ig-
nitor surfaces. Eight photo transistors (Texas Instrument LS 400) will
be used to determine the flame propagation rates. Several thermocouples
will be placed in the upstream and downstream sections for temperature
measurements. The pressures in both sections will be monitored by quartz
ecrystal transducers. Photographic records will be obtained with a 35mm
Fastax camera. The combustion will be initiated by two spark plugs fed
by a 7.5 kV ignition transformer. It is planned to use hydrogen-air,
methane-air, and propane-air mixtures for these experiments. Several
arrestor materials have been given to us by the Air Force Aero Propulsion
Laboratory. These samples include polyurethane foams of different pore
sizes, and mesh and sponges made of aluminum and stainless steel.

In both types of experiments the initial gas mixtures are at rest.
Future experiments are planned with flowing gas mixtures.

V. PERFORMANCE OF SUPERSONIC RAMJET

Previous calculations of the thrust specific fuel consumption of
supersonic ramjets (see AFOSR-TR 76 0503) revealed that the best per-
formance can be attained only with extremely high pressures in the com-
bustion chamber unless operation at altitudes where p < 1074 atm is
considered.

To investigate the effects of (1) less efficient diffusion pr. ces-
ses, (2) the use of hydrocarbon fuel (propane) instead of hydrogen and
(3) the mixing of fuel-air streams at different injection speeds and
temperatures on the thrust specific fuel consumption of the engine ad-
ditional calculations were made, the results of which are compiled in
Table 14. According to these data highly efficient diffusers are not
necessarily desirable when high flight speeds are considered because
they lead to very high pressures in the combustion chamber. Although
an inefficient diffusion process (e.g., a normal shock at the diffuser
inlet) can be used to avoid the high static pressure in the combustion
chamber, the losses caused by the rise in entropy of the air lead to
very high values of the thrust specific fuel consumption. An addit’cnal
increase in the thrust specific fuel consumption is produced when tue
temperature and the injection speed of the fuel differ greatly from the
respective values of the air flow through the combustion chamber inlet.
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